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…mathematical learning will be the 
distinguishing mark of a physician from a 
quack…

Richard Mead
A mechanical account of poisons in several essays

2nd Edition, London, 1708.

“….drug discovery & development needs to be more like engineering”
Janet Woodcock, FDA – PharmaDiscovery May 10 2006



Metabolism Then & Now

Hippuric acid formation from benzoic acid (Keller 1842)

Metabolism of 1000s of compounds assessed daily 
Sensitivity of analytical tools increased
Many “minor” metabolites identified

However data in public domain is sparse 
Focus on just a few enzymes – well characterized
How can we improve throughput ?
How can we use the metabolism data to predict toxicity?



Which P450s

Regiospecificity Lability Affinity Induction   Inhibition

After van de Waterbeemd & Gifford Nat Revs Drug Disc 2:192-204 (2003)
Williams et al DMD 32:1201-8 (2004), de Graaf et al., J Med Chem 48: 2725-2755 (2005)

Site of 
metabolism Rate of 

metabolism, Vmax

Km, Kd

Involvement in metabolism

Reaction cycle
Cytochrome P450



Ekins et al., Expert Opin Drug Metab Toxicol 1: 303-323 (2005), de Graaf et al., J Med 
Chem 48: 2725-2755 (2005), Locuson and Wahlstrom DMD 33:873–878 (2005)

Ligand based
Quantitative structure activity relationship (QSAR), pharmacophore

Protein based
Homology models, docking, molecular dynamics simulations

Rule based
MetabolExpert (Darvas et al), META (Klopman et al), Meteor
(LHASA)

Metabolism databases 
Metabolite (MDL), Metabolism (Accelrys) Assign occurrence 
frequencies to metabolites 

Combined/hybrid methods
MetaSite (Cruciani et al) Site of metabolism prediction for CYP2C9 
and  CYP3A4 etc

MetaDrug, Combining similarity to known ligands and regulatory and 
metabolic pathways, QSAR models etc.

Computational approaches



3D-QSAR

• A pharmacophore is the geometric arrangement of functional groups 
necessary for a biological response 

• Assumes molecules bind and orient similarly in same active site & 
Pharmacophore represents common features of ligands

• Comparative molecular field analysis (CoMFA)

• Catalyst (Accelrys)



PharmacophorePharmacophore MethodsMethods

Generate data > 16 molecules in vitro, Kd, Ki
Activities should span 4 orders of magnitude
Each magnitude should be represented by 3 compounds
No redundant information
No excluded volume problems

Generate 3D conformations of molecules

Align molecules

Select features contributing to activity

Regress hypothesis

Evaluate with new molecules with in vitro data

Result – 3D model that new molecules can be tested with



CYP2B6 CYP2D6 CYP3A4

R2 = 0.81

5.5 Å

8.7 Å

8.3 Å

19.1o

28.1o

Ekins et al.,  JPET, 288:21-29, (1999)
Ekins et al.,  JPET, 291:424-433, (1999)
Ekins, S., de Groot, M. & Jones, J. P. DMD 29, 936-944, (2001)
Wang & Halpert, DMD 30: 86-95, (2002)
Snyder et al., QSAR, 21: 357-368, (2002)

CYP Substrate Affinity Pharmacophores



Inside CYP2D6: Homology model based on rabbit CYP2C3/5
Fluoxetine -Showing position for N-demethylation

Snyder et al, QSAR 21: 357- 368 (2002)

Integrated Pharmacophore and Homology Model



CYP2D6 homology model Docking & ScoringCYP2D6 homology model Docking & Scoring

• CYP2D6 homology model
•Docked & scored NCI compounds
•Generated experimental data for CYP2D6 inhibition (IC50)
•To date no information on substrates and affinity vs ChemScore
• Kemp et al., J. Med. Chem. 2004, 47, 5340-5346



CYP3A4 Summary

Dominant enzyme in drug metabolism -an inducible enzyme -catalytic 
activity highly variable - Expressed in Liver, Kidney and GI tract

Broad substrate specificity implies large active site

Metabolizes many classes of drugs / opportunities for DDI

Bulky hydrophobic groups present on substrates

Some AA residues identified for inhibitor binding in active site

3D-QSAR models & many homology models 

Szklarz and Halpert, J Comp Aided Mol Design 11; 265-272 (1997) 



CYP3A4 Pharmacophores

Substrate

Ekins et al.,  JPET, 290:429-438, (1999)

Ekins et al.,  JPET, 291:424-433, (1999)

Inhibitor models
Midazolam 1’-hydroxylation    Cyclosporin A Metabolism

Quinine hydroxylation



CYP3A4, CYP3A5, CYP3A7 Inhibitor pharmacophores

Ekins et al TIPS (2003) 24:161-166



CYP3A4 Autoactivators and Heteroactivators
Ekins et al.,  JPET, 291:424-433, (1999)

Egnell et al., JPET 312:926–937, 2005

Autoactivators

Heteroactivators

Testosterone
Nifedipine

carbamazepine

Testosterone
A-napthoflavone

Progesterone
Artemisinin
Quinidine
felbamate



Ekins et al TIPS (2003) 24:161-166

CYP3A4 binding site Hypotheses



Progesterone Metyrapone
Williams et al., Science 305: 683-686 (2005) 

Erythromycin (docked)

Yano et al., J Biol Chem 279, 
38091–38094, 2004

Human CYP3A4 X-ray structures



no. of compounds 
Enzyme no. of compounds

Km<10 Km=10-100 Km>100 

CYP1A1 12 7 4 1 
CYP1A2 43 17 16 10 
CYP2A6 15 1 3 11 
CYP2B6 51 15 19 17 
CYP2C8 13 6 5 2 
CYP2C9 41 12 21 8 

CYP2C19 48 18 21 9 
CYP2D6 75 45 23 7 
CYP2E1 19 2 8 9 
CYP3A4 126 38 56 32 
CYP3A5 12 5 6 1 
CYP19 18 18 0 0 
Total 491 180 208 103 

 

Balakin et al DMD 32: 1183-1189 (2004)

Collected Km data for CYPs from the literature
Split data into groups

Reference Database of CYP substrates

Descriptor Definition 

LogP 
log of 1-octanol/water partition 

coefficient 

B_rot Number of rotatable bonds 

HBA Number of H-bond acceptors 

HBD Number of H-bond donors 

PNSA-1 Partial negative surface area 

Zagreb Sum of the squares of vertex valencies 

 



 

(a)                                                                        (b) 

 

(c)                                                              (d) 
Balakin et al DMD 32: 1183-1189 (2004)

Differences for low and high Km CYP3A4 binders (n=126)



Self-Organizing Map (SOM)
Unsupervised learning - neural 
network 10 x 10 node projection

Projects high-dimensional input data 
onto two-dimensional SOM

Preserves the topology of the input 
data

Cluster visualization



  

(a)                                                               (b) 

Km < 10μM

Km > 100μM

Balakin et al DMD 32: 1183-1189 (2004)

CYP3A4 binding SOM N= 126 molecules

15 CYP3A4 inhibitors

87% - 94% of 
molecules located 

correctly in CYP3A4 
low Km 

region of map

Testing with 33 CYP3A4 
binders



Mechanism-based inhibitor =  binds to the active site, then becomes 
catalytically activated by the enzyme 

Activated form of the molecule irreversibly binds to the enzyme to remove 
it from the active enzyme pool.  

Some mechanism-based inhibitors cause irreversible inhibition by forming 
a MIC with the heme

Inactive CYP could lead to misinterpretation of DDI data

Primary, secondary or tertiary amines, or methylenedioxy constituents are 
prerequisites for MIC compounds (Franklin, 1977).

No previous attempts to computationally model MIC 
formation

CYP3A4 Metabolic Intermediate Complex (MIC) formation



Subtle differences - impact on MIC Formation

Do not form MIC

Form MIC

3-hydroxytamoxifen 4-hydroxytamoxifen

Tamoxifen N-desmethyltamoxifen



Molecules tested

Antibiotics
Calcium channel blockers
CNS drugs
HIV protease inhibitors
Anticancer
Miscellaneous

54 molecules assessed for MIC formation with recombinant CYP3A4 
(+b5) in vitro (27 MIC +, 27 MIC -)

Used dual wavelength spectroscopy scanning from 380-500nm
Difference spectra calculated at 490nM vs 452nM at a specific time
Extinction coefficient 65mM-1

Jones et al 2007, DMD in press



Simple property analysis

Generated calculated LogP and molecular weight with ChemDraw for excel

t-test with SPSS

1.24-7.051.533.861.44-6.811.443.92cLogP

133.2-670.9137308263.4-798174472MWT

Non-MIC 
range

Non-MIC 
SD

Non-MIC 
Mean

MIC rangeMIC
SD

MIC
Mean

*

* p < 0.05

Across all 54 compounds:
number of rotatable bonds & molecular weight (r2 = 0.68) 
number of hydrogen bond acceptors & molecular weight (r2 = 0.75) 
number of hydrogen bond donors & molecular weight (r2 = 0.42)

Jones et al 2007, DMD in press



MIC forming compounds 
non-MIC forming 

compounds
non-MIC forming 

compounds which 
inactivate CYP3A4

Generated with Catalyst HIPHOP (Accelrys)
Blue spheres = hydrophobic, green feature = hydrogen bond acceptor, Purple 

spheres = hydrogen bond donor.

Jones et al 2007, DMD in press

Initial qualitative models:
CYP3A4 Metabolite Intermediate Complex



ChemTree (GoldenHelix) –single tree and 100 random trees (cutoff 0.5) 
using ChemTree path length descriptors alone

Single tree 87% correct, 100 tree 91% correct with Chemtree descriptors
100 tree model with Cerius2 and ChemTree descriptors 

Cerius2 CSAR (Accelrys) – internally validated 10 fold (74%), 5 fold (80%) 
and 2 fold (76%) cross validation

Tree function in R – five fold cross validation 96% correct

All models tested with 12 compounds from the literature

Metabolite Intermediate Complex - Recursive partitioning

Jones et al 2007, DMD in press



R tree model for 
CYP3A4 (+b5) MIC 
formation

model had 96 % prediction 
accuracy for the 54 compounds in 
the training set. Jones et al 2007, DMD in press

ptorHbond_Acce59.047.2

ptorHbond_Acce59.047.2
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Logistic Regression

The hydrogen bond acceptor 
descriptor was the most important 
predictor (p-value = 0.002).

The logistic regression model had 
80 % prediction accuracy for the 
54 compounds in the training set. 



Summary of descriptors & training and test set correlations

11/12 = 91.6%43/54 = 80%Hydrogen bond acceptor,Linear model in R

11/12 = 91.6%52/54 = 96%Hydrogen bond acceptor, 
radius of gyration, sum of 
atomic polarization, and 
dipole magnitude

Tree in R

10/12 = 83.3%

10/12 = 83.3%

49/54 = 91%

54/54 = 100%

Hydrogen bond acceptor, 
hydrophobic and Radius of 
Gyration, 

Hydrogen bond acceptor, 
Hydrogen bond donor, area, 
and Dipole magnitude

ChemTree (100 
tree) and Cerius2 

descriptors

Cerius2 CSAR Tree

10/12 = 83.3%49/54 = 91%Hydrogen bond acceptor 
and hydrophobic

ChemTree (1 and 
100 tree models)

NANAHydrophobic feature and 
Hydrogen bond acceptor

Pharmacophores

Test set (n=12)Training (n=54)Selected DescriptorsPrediction Model

Jones et al 2007, DMD in press



Collected > 80 general rules for phase I and II metabolism

N-glucuronoside transfer      
O-glucuronoside transfer      

O-sulfate transfer      
N-sulfate transfer      

S-glutathione transfer      
Glutathione S-transfer to epoxide

Glutathione S-transfer - halogen      
Glutathione S-transfer to alkenes      
Glutathione transfer to aldehyde

Glutathione replacement of sulfate      
Glutathione S-transfer to quinones

O-methyl transfer      
N-methyl transfer      
S-methyl transfer      

Heterocyclic N-methyl transfer      
glycine conjugation      

Glutamine conjugation      
Cysteine S-transfer to epoxide

Cysteine S-transfer - halogen      
Cysteine S-transfer to alkenes      
Cysteine transfer to aldehyde

Cysteine replacement of sulfate      
Glutathione S-transfer to nitroarenes

Cysteine S-transfer to benzyl      

Azo reduction                                                      
carbonyl reduction                                              
Amide hydrolysis                                                
Oxidative dehalogenation
Hydrolytic dehalogenation
Oxime oxidation                                                      
Complex quinone formation                                                      
o-quinone formation                                                      
p-quinone formation                                                      
Thiol oxidation                                                 
Phosphate hydrolysis                                            
Phosphite hydrolysis                                                     
Phosphorothioate to phosphate                                                   
Phosphite oxidation                                                      
Sulfoxide reduction                                                      
Carboxyl reduction                                              
Carbonyl halide hydrolysis                                      
Decarboxylation
peptide hydrolysis                                              
unsaturated bond hydratation
transamination
N-formyl transfer                                                       
O-phosphate transfer                                              
O-acetyl transfer 

N-dealkylation
O-dealkylation
S-dealkylation
sulfide oxidation                                               
sulfoxide oxidation                                                      
aromatic hydroxylation                                          
aliphatic hydroxylation                                         
N-oxide formation                                                 
Nitro-group reduction                                                 
Double bond peroxidation
Hydroxyl-carbonyl oxidation                                              
aldehyde oxidation
Double bond formation 
(desaturation)                                                               
N-hydroxylation                                                   
Thione oxidation                                                      
N-acetyl transfer                                                 
oxidative deboronation
Double bond epoxidation
ester hydrolysis                                                
epoxide hydrolysis                                                     
Azide reduction                                                      
oxidative deamination
Glutathione S-transfer to benzyl 
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Molecule A 1  0  0  0  0  0  0  1  0  0  0  0  0  0  1  0  1  0 1  0 1  0  1  0  0  1  0  1  0  0 1  0  1  0  0  1  1  1  1  1 1  1  1  1  1  1 1  1  1
Molecule B 0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  1  0 1  0 1  0  1  0  0  1  0  1  0  0 1  0  1  0  0  1  1  1  1  1 1  1  1  0  0  0 0  0  0
Molecule C 1  0  1  1  1  0  0  1  0  0  0  0  0  0  1  0  1  0 1  0 1  0  1  0  0  1  0  1  0  0 1  0  1  0  1  1  1  1  1  1 1  1  1  1  1  1 1  1  1
Molecule D 0  0  0  0  1  1  0  0  0  0  0  0  0  0  1  0  1  0 1  0 1  0  1  0  0  1  0  1  0  0 1  0  1  1  1  1  1  1  1  1 1  1  1  0  0  0 0  0  0

Known molecules queried with n biotransformation rules to annotate observed metabolites as a binary bit string

Add path length molecular descriptors

Generate machine learning algorithm to predict 
the metabolite binary bit string for each input molecule

Collected over 300 molecules with human drug metabolism data
Used as a binary training set

Metabolite prioritization

Ekins, in Computer applications in pharmaceutical research and development, Wiley 2006

Embrechts and Ekins, DMD 35: 325-327, 2007



x1

x2

x3

t1

t2

y

• Direct Kernel PLS is PLS with the kernel transform as a preprocessing 
step
• Consider K-PLS as a “better” nonlinear PLS
• K-PLS gives almost identical (but more stable) results as support vector 
machines (SVMs)

- easy to tune (5 latent variables)
- unlike SVMs there is no patent on K-PLS

•K-PLS transforms data from a descriptor space to a t-score space

Mark Embrechts @ RPI

Machine learning -Kernel PLS (K-PLS)
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N-dealkylation O-dealkylation
Aromatic 
hydroxylation 

Aliphatic 
hydroxylation O-glucuronidation O-sulfation

K-PLS results metabolite prediction

Ekins, in Computer applications in pharmaceutical research and development, Wiley 2006
Embrechts and Ekins, DMD 35: 325-327, 2007



Metabolite rules

QSAR modelsMolecules (sdf, mol)

Prioritize 
metabolites

Visualization 
tools

Pathway 
database/maps

HT-data Visualize predicted 
& empirical data

Select most promising 
compounds

MetaDrug: A hybrid method

Molecules (sdf, mol)

Software written in Perl
Major components:
CambridgeSoft ChemDraw ActiveX, GoldenHelix
ChemTree, Accelrys Accord Oracle
Client – server software

Launched Sept 2004 by GeneGo - Patent Pending 



Combined Approach to Metabolism and Toxicity Assessment

Ekins et al., Drug Metab Dispos, 34: 495-503 (2006)

Molecule predicted to have a relatively high affinity 
for:
CYP3A4 Km (predicted, 15 uM; actual ~10 uM, similarity 
score =0.78)  
CYP3A4 Ki (predicted, 13.5 uM; actual 10 uM, similarity 
0.78) 
PXR (predicted to bind, 0.90 similarity score = 0.77)

Package insert – Known CYP3A4 & P-gp inducer

Molecule predicted to have a relatively high affinity 
for:
CYP3A4 Km (predicted, 14.8 uM; similarity score =0.75)  
CYP3A4 Ki (predicted, 8.1 uM; similarity 0.78) 
PXR (predicted to bind, 0.58 similarity score = 0.77)



Autoexpand Network
Data from  Hartley et al Mol Pharmacol 65 (2004) 1159-1171
Rats treated with L-742694 potent PXR agonist – appears to increase expression of 
metabolizing enzymes and transporters – increasing clearance?

Predicted Interactions and Microarray Data

Ekins et al., Drug Metab Dispos, 34: 495-503 (2006)



Conclusions
Use computational methods to screen virtual and real compound libraries

Complexity in prediction of multiple molecules binding simultaneously & location

Molecule interactions, molecule –water-molecule interactions

Need for new approaches 

Statistical models limited by training set 

Understand extrapolations

Need for more generalizable rules for CYPs

Approaches that combine regiospecificity, affinity and lability

Models for rat and mouse enzymes

Integration of computational models with in vitro methods, model rebuilding
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